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ABSTRACT 

 
 Air combat relies on complex strategies balancing attack and defense maneuvers. This 

project aims to enhance autonomous decision-making capability in air combat scenarios by 

developing an algorithm combining advanced techniques such as game theory, fuzzy logic, and 

dynamic programming. The algorithm to be developed focuses on enabling autonomous systems 

to make informed decisions during air combat. To achieve this, the developed algorithm will be 

tested in a simulation environment, and its success rate will be measured. The performance of 

the algorithm will be evaluated by testing it on various simulated combat scenarios. Success 

metrics will include mission success rates, resource utilization efficiency, and adaptability to 

changing environments. This study aims to present a new and effective approach that can be 

used to enhance the decision-making capability of autonomous systems in air combat situations.  

 

Keywords: air combat, fuzzy logic, dynamic programming, decision-making algorithms 
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ÖZET 

 

 Hava muharebeleri, saldırı ve savunma manevralarının dengeli bir şekilde yapıldığı 

karmaşık stratejilere dayanmaktadır. Bu projede, hava muharebelerinde otonom karar alma 

yeteneğini artırmak için oyun teorisi, bulanık mantık ve dinamik programlama gibi ileri düzey 

tekniklerin birleşiminden oluşan bir algoritma geliştirilmesi hedeflenmektedir. Geliştirilecek 

olan algoritma, hava muharebelerinde bilinçli kararlar alabilen otonom sistemlerin 

geliştirilmesine odaklanmaktadır. Bu amaçla, geliştirilen algoritma simülasyon ortamında test 

edilecek ve başarı oranı ölçülecektir. Algoritmanın performansı, çeşitli simüle edilmiş muharebe 

senaryoları üzerinde test edilerek değerlendirilecektir. Başarı metrikleri arasında, misyon başarı 

oranları, kaynak kullanım verimliliği ve değişen ortamlara uygunluk gibi faktörler bulunacaktır. 

Bu çalışma, hava muharebelerinde otonom sistemlerin karar alma yeteneğini artırmak için 

kullanılabilecek yeni ve etkili bir yaklaşım sunmayı amaçlamaktadır.  

 

Anahtar Kelimeler: hava muharebesi, bulanık mantık, dinamik programlama, karar alma 

algoritması 
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1. INTRODUCTION 

 

Today’s military operations demand sophisticated decision-making from military 

aircraft due to the increasing complexity and dynamic nature of air combat environments. 

Despite reduced direct human intervention in modern military operations, the rapidly evolving 

scenarios and uncertainties, such as changing enemy tactics and radar data, necessitate advanced 

decision-making mechanisms. This complexity poses significant challenges for the safety and 

success of military assets on the battlefield. With rising military expenditures and technological 

advancements, the demand for capable aircraft is growing. However, for these aircraft to be 

effective, they must quickly and accurately process information to make strategic decisions. 

Thus, enhancing the decision-making capabilities of warplanes in air combat is a primary 

concern for military strategists and engineers. In this context, the aim of this project is to develop 

a comprehensive decision-making mechanism to enhance the effectiveness of warplanes in air 

combat environments. This mechanism will support traditional military operations, allowing 

aircraft to evaluate targets and threats efficiently and make strategic decisions. With 

advancements in technology, the development of such algorithms has accelerated. One 

commonly used approach in these developments is fuzzy logic. According to studies in this 

field, fuzzy logic is a valuable method for analyzing and making decisions in complex and 

uncertain situations that cannot be described with simple binary values like true/false [1]. Fuzzy 

logic is particularly useful in air combat due to the numerous variables and uncertainties 

involved, such as enemy tactics and radar data. These factors can significantly affect the 

outcome of engagements. By processing complex and uncertain data, fuzzy logic can assess the 

threat levels of target aircraft. It takes into account various factors like the target's location, 

speed, and maneuvering capabilities to determine how dangerous a particular target aircraft is. 

This information allows military aircraft to make strategic decisions and respond appropriately 

to threats [2]. Additionally, the project plans to incorporate deep reinforcement learning to 

develop a dogfight scenario. Deep reinforcement learning enables military aircraft to improve 

their decision-making processes by learning from their experiences over time. This technique 

employs deep neural networks to estimate Q-values, which represent the total expected reward 

for each state-action pair, guiding the agent in choosing the best actions. The learning process 
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occurs through trial and error, allowing the agent to learn which actions maximize its rewards 

[3]. Furthermore, the aircraft is expected to follow a path towards the enemy aircraft as 

determined by fuzzy logic. Initially, this path will be learned through reinforcement learning, 

followed by the realization of a dogfight scenario. As an alternative, the project aims to 

determine an optimal route using the A* algorithm, integrate a camera into the aircraft, and 

utilize object detection algorithms. This combination will enable the aircraft to detect enemy 

planes and engage in dogfight strategies as needed. By integrating these algorithms and 

techniques, the project strives to ensure that aircraft can successfully complete their missions 

and achieve strategic goals in air combat, effectively responding to the complex and uncertain 

conditions they encounter. 

 

2. REQUIREMENTS SPECIFICATION 

 

This thesis aims to develop autonomous aircraft systems during air combat. For this 

purpose, fuzzy logic-based decision-making algorithms have been developed and implemented 

using the Gazebo simulation environment and ROS to capture and process data. This algorithm 

is designed to detect enemy aircraft and direct them to the most dangerous enemy aircraft. Once 

the location of the enemy aircraft is determined, the aircraft will be detected with the YOLOv8 

algorithm and tracking will be initiated. This pursuit is intended to resemble a dogfight scenario. 

Additionally, the A* path planning algorithm will be used to ensure the safe and efficient 

movement of the aircraft. These requirements include the basic steps necessary for the 

successful completion of the project. 

 

2.1. Simulation Environment Requirements 

 

• Installation and configuration of the environment to ensure compatibility of Gazebo and 

ROS platforms. 

• Determination of requirements for simulating physical obstacles and weather conditions 

in the simulation environment. 

• Gazebo and ROS platforms run on the Linux operating system [3]. 
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2.2. Decision Making Algorithm Requirements 

 

• Development of fuzzy logic based decision making algorithm. 

• Fuzzy logic based detection system requirements to detect enemy aircraft. 

• Decision making algorithms are written using Python. The 'skfuzzy' library in the Python 

programming language was used [4]. 

 

2.3. Enemy Aircraft Detection  

 

• Selection and installation of appropriate camera hardware for the integration of image 

processing algorithms. 

• Detecting enemy aircraft and determining their locations with the YOLOv8 algorithm. 

 

2.4. Path Planning Algorithm Requirements 

 

• Conducting reinforcement learning trainings and determining whether they work 

efficiently. 

• Integration of the A* path planning algorithm for cruise planning towards the designated 

location of the enemy aircraft as an alternative solution. 

• Development of motion control systems so that the aircraft can perform the necessary 

maneuvers to track enemy aircraft. 

 

2.5. Performance and Reliability Requirements 

 

• Determination of performance metrics related to the speed and accuracy of the decision-

making algorithm. 

• Providing automatic debugging and security measures to detect and fix any errors in the 

system. 

 

2.6. Integration and Testing Requirements 

 

• Seamless integration of all components (simulation environment, perception system, 

path planning and motion control). 
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• Planning and execution of system tests, component tests and integrated system tests. 

 

3. STANDARDS 

 
The following standards were used during the project development process. 

 

• IEC 29119-1 (International Electrotechnical Commission’s international standard on 

specifies general concepts in software testing and presents key concepts): This standard 

was taken into account when testing the written algorithms and software. 

 

• IEEE 24641 (IEEE Standard for specifies interrelationships between the components of 

the reference model): The interoperability of the algorithms is done in accordance with 

this standard. 

 

• Software Language Standard- Python 3.8.x: The software languages used in the 

project were used in accordance with the necessary standards. 

 

4. PATENTS 

 
Some similar patents in the project are listed below. 

• Prioritizing use of flight attitude controls of aircraft, Patent NO: US11124289B2 

• Unmanned vehicle route planning method based on improved A-star algorithm 

and deep reinforcement learning: CN111780777B 

 

5. THEORETICAL BACKGROUND 

 

5.1 Simulation Environment 

 
Simulation environments play an important role in robotic studies. It provides a platform 

for testing and improving software in a controlled manner. Gazebo and Robot Operating System 

(ROS) are widely used for this purpose. Gazebo has created a 3D, dynamic, multi-robot 
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environment that can recreate the complex worlds that next-generation mobile robots will 

encounter. Its open source status, fine grained control, and high fidelity place Gazebo in a unique 

position to become more than just a stepping stone between the drawing board and real 

hardware: data visualization, simulation of remote environments, and even reverse engineering 

of blackbox systems are all possible applications [6]. ROS is not an operating system in the 

traditional sense of process management and scheduling; rather, it provides a structured 

communications layer above the host operating systems of a heterogenous compute cluster [7]. 

The fundamental concepts of the ROS implementation are nodes, messages, topics, and services 

[8]. Integration between ROS and Gazebo is provided by a set of Gazebo plugins that support 

many existing robots and sensors. Because the plugins present the same message interface as 

the rest of the ROS ecosystem, you can write ROS nodes that are compatible with simulation, 

logged data, and hardware [8]. 

In the project, a ROS supported camera was used and integrated on the aircraft. OpenCV 

is the premier computer vision library, used in academia and in products around the world. 

OpenCV provides many common computer vision algorithms and utilities that you can use and 

build upon. ROS provides tight integration with OpenCV, allowing users to easily feed data 

published by cameras of various types into OpenCV algorithms, such as segmentation and 

tracking. ROS builds on OpenCV to provide libraries such as image_pipeline, which can be 

used for camera calibration, monocular image processing, stereo image processing, and depth 

image processing [8]. 

 

Figure 1. ROS OpenCV integration [8] 

Figure 1 shows how ROS integrates with the OpenCV library. At the same time, in the 

project, the positions of the aircraft were taken through the odom node of ROS. The coordinate 
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frame called odom is a world-fixed frame [9]. Figure 2 shows the integration of odom data with 

ROS.  

 

Figure 2. ROS odom integration [9] 

 

5.2 Decision Making Algorithm (Fuzzy Logic) 

 

Fuzzy logic algorithms have great importance in decision-making algorithms used in 

aviation. Fuzzy logic is basically an analysis and decision-making method used to address more 

complex and uncertain situations that cannot be defined by extreme values such as true/false. 

In classical logic, propositions are accepted to be absolutely true or absolutely false. This 

is mathematically represented by two values: one (1) for true and zero (0) for false. This dual 

approach forms the basis of traditional logic systems and digital computing. However, the 

situation is different in fuzzy logic; Here, the degree of accuracy can take an infinite number of 

values between zero (0) and one (1), instead of being absolutely right or absolutely wrong. This 

approach allows to better express uncertainties and intermediate states, thus helping to model 

complex and dynamic systems more realistically. An example illustrating the working principle 

of fuzzy logic is provided in Figure 3. 

 

Figure 3. Fuzzy Logic System 
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A Fuzzy Inference System (FIS) transforms input data into output data using fuzzy logic 

principles to handle uncertain or imprecise information. The system comprises four main stages: 

fuzzification, inference, rule base, and defuzzification. In the fuzzification stage, a specific input 

value is transformed into fuzzy sets through corresponding membership functions. The 

membership of an element x in a fuzzy set A in a universal set is expressed by μA(x) ∈ [0,1]. In 

this stage, for instance, the membership degrees of a distance can be calculated for categories 

such as very close, close, normal, far, and very far. 

In the inference stage, outputs are computed using the fuzzy rules defined in the system. 

The rules are typically expressed in the "IF-THEN" format. If x is A, then y is B. Here, the input 

sets A and B can be determined using the minimum operator (min) in equation (1). 

 

min(𝜇𝐴(𝑥), 𝜇𝐵(𝑦))        (1) 

 

Outputs determine how strongly each rule is applied. Another method used in this stage 

is the combination of various rules using the maximum operator (max) in equation (2) among 

fuzzy sets. 

 

μR(z) = max⁡(min(𝜇𝐴1(𝑥), 𝜇𝐵1(𝑦)),min(𝜇𝐴2(𝑥), 𝜇𝐵2(𝑦)),… ,min(𝜇𝐴𝑛(𝑥), 𝜇𝐵𝑛(𝑦))) (2) 

 

In the defuzzification stage, a single crisp output value is obtained from the combined 

fuzzy sets. The most commonly used defuzzification method is the calculation of the centroid. 

In this method, the centroid of the output is found as in equation (3). 

 

𝑧 = ⁡
∫ 𝜇𝐶(𝑧)⋅𝑧⁡𝑑𝑧

∫ 𝜇𝐶(𝑧)⁡𝑑𝑧
      (3) 

 

This formula provides a defuzzified crisp value by calculating the centroid of the fuzzy 

output sets. Alternatively, other defuzzification methods, such as the peak of the fuzzy output 

or weighted average, can also be used [10]. 
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The Mamdani fuzzy inference system is a commonly used method in fuzzy logic, 

preferred particularly because it aligns more closely with human perception. To fully define the 

operation of this system, various operators need to be assigned. These are: 

• The AND operator used in the calculation of rule output (typically a T-norm). 

• The OR operator (typically a T-conorm). 

• The Implication operator used in the calculation of resultant MFs.. 

• The Aggregate operator used to combine qualified resultant MFs into a single overall 

output MF (typically a T-conorm). 

• The Defuzzification operator, which transforms an output MF into a single crisp value. 

The centroid of area (COA) method used to calculate the final crisp output in the Mamdani 

fuzzy inference system is expressed as equation (4). 

 

𝑍𝑐𝑜𝑎 = ⁡
∫ 𝑧⁡𝜇𝐶(𝑧)⋅𝑧⁡𝑑𝑧

∫ 𝑧⁡𝜇𝐶(𝑧)⁡𝑑𝑧
=⁡

𝜔1𝑎1𝑧1+𝑤2𝑎2𝑧2

𝑤1𝑎1+𝑤2𝑎2
        (4) 

 

 
In this formula, ai and zi are the area and centroid of the resultant MF, respectively, and 

ωi is the output of the rule. The defuzzification unit combines the outputs of all the rules 

generated by a specific input and produces a crisp output. Thus, the fuzzy output is converted 

back into a precise number. The centroid of area method is the most common way of 

defuzzification, where the centroid of the fuzzy set is measured and projected onto the z-axis to 

obtain a crisp result. The system logic is shown in Figure 4. 

 

 

Figure 4. Mandani Fuzzy Inferance System 
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In the literature, similar studies have been conducted in air combat scenarios. For 

example, the rapid and accurate threat evaluation (TE) of incoming aerial targets has a 

significant impact on air defense. Two new generalized intuitionistic fuzzy soft set (GIFSS) 

methods have been proposed for the threat evaluation of certain aerial targets. Specifically, a 

model based on the generalized λ-Shapley Choquet integral has been proposed for threat 

evaluation of aerial targets. This model mitigates uncertainties by using weighted averages of 

different parameters to more accurately determine threat levels [11]. Similarly, in our project, 

parameters such as the aircraft's distance, speed, and position are evaluated to determine the 

threat level; however, our approach is based on fuzzy logic and uses fuzzy membership 

functions. Moreover, Beyond Visual Range (BVR) air combat is a significant trend in future 

warfare tactics. In this scenario, a fighter aircraft can attack the enemy before a direct encounter. 

The complexity of this tactic arises from the need to consider the target's maneuvers, the 

missile's characteristics, and the positional advantages of the fighter aircraft. We can approach 

this complexity with an algorithm that takes into account some critical parameters. These 

parameters are processed to determine the superiority of the fighter aircraft and the threat factor 

of the enemy. The data obtained from this process is used as input for a fuzzy logic algorithm 

to determine the optimal combat strategy [12]. 

 

5.3 Path Planning Algorithm 

 

5.3.1 Deep Q-Learning (Reinforcement Learning) 

 

Reinforcement Learning is one of the modern artificial intelligence algorithms used in 

path planning. In the reinforcement learning model, an agent improves itself based on its 

environment through perception and action, as illustrated in Figure 5. At each step of 

development, the agent receives an input (i) from the current state (s) of the environment. It then 

selects an action and produces this action as an output. The action changes the state of the 

environment, and the value of this state transition is provided to the agent as a scalar 

reinforcement signal (r/reward). The agent's behavior (B) should be inclined to choose actions 

that increase the total value of the reinforcement signal [13]. In other words, the goal is to 

maximize the reward in the reward-punishment system. 
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Figure 5. Standard Reinforcement Learning Model 

In Deep Reinforcement Learning, a deep neural network is used to estimate Q-values. 

Q-values are estimated values of the expected total reward for each state-action pair. These Q-

values represent the expected reward an agent can obtain by taking any action in a given state. 

The deep neural network is used to predict these Q-values and assist the agent in selecting the 

best actions. Q-learning aims to choose actions that maximize the sum of the immediate reward 

and the value of the subsequent state. While performing action A in state S, it leads to states 

where the reward is r. Figure 6 shows the formula for calculating the Q-value. [14] 

 

 

Figure 6. Q-Value 

The decision-making steps of the Deep Q-Learning algorithm are outlined below. The 

block diagram summarizing these steps is provided in Figure 7.  

1) Set the parameters. 

• Initialize the parameters for the Deep Q-Learning algorithm. 

2) Update the parameters through training. 

• Train the model and update the parameters based on the learning process. 

3) If the maximum Q-value corresponds to the airplane's behavior, calculate the Q-

value. 

• Compute the Q-value for the action that corresponds to the maximum Q-value 

associated with the airplane's behavior. 
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4) Based on the 𝑄𝑚𝑎𝑥 value, output the decision-making behavior that corresponds to 

the 𝑄𝑚𝑎𝑥 value. 

• This represents the best decision-making behavior for the airplane in the current 

environment. 

5) The environment is rewarded or penalized based on the behavior, and the decision-

making process is updated. 

• Adjust the decision-making process by providing rewards or penalties to the 

environment based on the actions taken. 

 

  

Figure 7. Block diagram of the Deep Q Learning based decision making model [15] 

 

5.3.2 A* Algorithm 

 

A* is a search algorithm that has long been used in the pathfinding research community. 

Its efficiency, simplicity, and modularity are often highlighted as its strengths compared to other 

tools [16]. The A* algorithm, unlike other algorithms, has brains. So, it is a really smart path 

finding algorithm compared to other algorithms. What A* Search Algorithm does is that at each 

step it picks the node according to a value-‘f’ which is a parameter equal to the sum of two other 

parameters – ‘g’ and ‘h’. At each step it picks the node/cell having the lowest ‘f’, and process 

that node/cell [17]. Below are the steps of the A* algorithm. 

1) An open list is initialized. 

2) A closed list is initialized. The starting point is added to the open list. 

3) Until the open list is empty, the node with the smallest 'f' value is found in the open 

list. This node is called 'q'. The value 'q' is extracted from the open list. 

4) If target and 'q' are equal, the algorithm is stopped. 
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5) If not, 'g' and 'h' values are calculated again. This can be done in many ways. 

Figure 8 gives a visual of how the A* algorithm works. 

 

Figure 8. A* Algorithm [17] 

 

5.4 Object Detection and Tracking 

 

The YOLO algorithm stands out as a critical component in many fields such as real-time 

object detection, autonomous vehicles, robotics, video surveillance and augmented reality. The 

most important feature that distinguishes it from models such as RCNN, FasterRCNN etc. is 

that it can provide fast results. A single convolutional network simultaneously predicts multiple 

bounding boxes and class probabilities for those boxes [18]. The algorithm divides the image 

into NxN sized frames to minimize errors and make better decisions. Each frame is individually 

scanned to check whether an object is present or not. If the frame contains an object, it is checked 

whether the object's center point lies within that frame. The frame that contains the object's 

center point is defined as the decisive frame. [19] The frame containing the object's center point 

returns specific parameters. These parameters include the coordinates of the bounding box 

surrounding the object, the confidence score, and the object's class. The mechanism of how the 

YOLO algorithm works on an image is illustrated in Figure 9. 
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Figure 9. The YOLO Detection System [18] 

 
Average Precision (AP) and confidence score are important metrics that evaluate the 

model's accuracy and coverage. Precision is the probability that the objects it detects are correct 

among all objects. Recall is how many of the detected objects are correct. These equations are 

included in equation 5. AP measures the relationship between precision and recall by calculating 

the area under the precision-recall curve. An example of this graph is shown in figure 10. This 

metric summarizes the performance of the model for different confidence thresholds and 

determines the overall performance by evaluating each object category separately. [18] 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
⁡⁡𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑇𝑃

𝑇𝑃+𝐹𝑃
    (5) 

 

Figure 10. mAP Graph on example Dataset [18] 

Confidence score expresses the probability of the model finding an object in a frame. 

This score is obtained by multiplying the probability of the object (Pr(Object)) by the 

Intersection over Union (IoU) value. IoU is calculated as the ratio of the intersection between 

the predicted box and any ground truth box to the union. The trust score takes a value between 

0 and 1; 0 indicates that the object definitely does not exist, and 1 indicates that it definitely 

exists. The algorithm can sometimes return unnecessary parameters and draw multiple boxes. 

Or it can find more than one center point of an object. The box with the highest detection 

probability (with a high IOU value) is selected and other boxes with lower IOU values are 
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removed. This process is called Non-Maximum Suppression. [20] The network can detect an 

object when there is no object in the frame, draw the bounding frame incorrectly, or make errors 

in classification. To prevent such situations, the loss function in equation 6 must be used. This 

function is created by summing the loss values in the box coordinates and confidence score 

value for classification [18]. 

 

       (6) 

 

As a result, the image divided into frames of size NxN returns a total of 5 values (4 box 

coordinates and a confidence score) and object class probability for each bounding box. As seen 

in the general yolo architecture in figure 11 The total output size on each image is expressed as 

NxNx(5B+C).  

 

 

Figure 11. General YOLO Architecture 

 

Within the scope of the project, the YOLOv8 model, whose architecture is shown in 

Figure 12, is used. Improvements over previous models are as follows: [21] 
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1. Decoupled Head structure: With this structure, the model can process object 

detection and classification tasks independently of each other. In this way, each 

model produces a better score on its own. 

2. Activation Functions: While sigmoid is used for object detection, softmax is used 

for class prediction. 

3. Loss Functions: CIoU and DFL are used for the object box. In this way, 

performance is increased when detecting small objects. Binary cross entropy is 

used as classification loss. 

4. Anchor-Free Model: Direct anchor detection is performed and thus more 

accurate object detection can be achieved. 

 
Figure 12. Yolov8 Architecture [21] 

 

6. METHODOLOGY 

 
6.1 Simulation Environment 

 
The simulation environment was created on the gazebo tool as shown in figure 13 and 

figure 14. There are a total of 5 fixed-wing unmanned aerial vehicles in the environment. 4 of 

them are enemy planes in red. The other one is the user's plane in blue. Additionally, there are 

constantly moving clouds in the sky. A gray background is placed at the bottom of the 

environment. 
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Figure 13. Simulation Environment 

 

 

Figure 14. Simulation Environment 

 
6.2 Decision Making Algorithm with Fuzzy Logic 

 
A Fuzzy Inference System with 3 inputs was designed to find the most dangerous aircraft 

in the project. The system determines a danger level for each enemy aircraft using the speed, 

location, and position data from the aircraft.  

The first of the inputs is distance information. The distance between the enemy aircraft's 

location and the user aircraft is determined. This location information is read through the odom 

topic with RosPy. A distance membership function value is calculated based on this distance. 

The graph of these membership functions is shown in figure 15. While the closest membership 

function value is calculated for the range of 0 - 6 meters, the farthest membership function value 



 17 

is calculated for 17 meters and above. This distance value is normalized between 0-1 to obtain 

more accurate results before being sent to the fuzzy system.  

 

Figure 15. Distance Membership Functions 

 
The second input value is the forward speed of the enemy aircraft at the time of 

calculation. With RosPy, Twist type speed data is sent and read to the aircraft via the cmd_vel 

topic. The speed data in this twist type is in the range of 0-1. For this reason, fast, slow and 

medium membership functions in the range 0-1 in Figure 16 were created.  

 

Figure 16. Velocity Membership Functions 

As the final input, information about the position of the enemy aircraft relative to the 

user aircraft is used. An algorithm has been developed to calculate this position information. 

The algorithm reads the yaw angle and position information of the aircraft using odom data. 
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When we divide the simulation environment into four regions, the algorithm first determines in 

which region the enemy aircraft is relative to the user aircraft. Afterwards, the position value is 

normalized between 0-1 in accordance with the direction and region. And this value is used in 

the membership functions in Figure 17. The min-max normalization formula in equation (7) is 

used for this normalization process. 

 

𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 = (⁡
𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛−𝑚𝑖𝑛𝑜𝑙𝑑

𝑚𝑎𝑥𝑜𝑙𝑑−𝑚𝑖𝑛𝑜𝑙𝑑
∗ (𝑚𝑎𝑥𝑛𝑒𝑤 −𝑚𝑖𝑛𝑛𝑒𝑤)) + 𝑚𝑖𝑛𝑛𝑒𝑤   (7) 

 

 
Figure 17. Position Membership Functions 

 

These three membership values obtained are processed according to the 70's min-max 

rule system shown in Figure 18. The minimum of each value is determined, and then the 

maximum of those belonging to the same output membership function is determined.  
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Figure 18. Rule System 

 
Figure 19 shows these output membership functions. These class values are passed 

through the defuzzifier function to determine a danger level. Mamdani fuzzy inference system 

is used in this process. In this way, the membership values obtained are processed in the rule 

base and then the degree of danger is calculated. 
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Figure 19. Risk Membership 

 

6.3 Path Planning Algorithms (RL, A*) 

 
In the project, two different algorithms were studied for the path determined when 

heading towards the most dangerous aircraft. The first studies were on reinforcement learning. 

However, since this method does not work efficiently on 3 axes, an A* algorithm has also been 

developed. 

 

6.3.1 Determine Path Reinforcement Learning 

 
At the beginning of the studies, a Deep Q RL model was developed to reach the target 

point safely. The model takes the instantaneous distance of the aircraft to the target as input and 

sends speed data to the aircraft as output. 

The reward system of the model is structured according to how far the aircraft is from 

the target location. Each time the plane reaches the target it gets +100 points. If the plane cannot 

reach the target within a certain time or the agent hits an obstacle, -100 points are awarded. At 

the time of departure, the reward is structured according to how far the aircraft is from the target 

location. The main purpose of the training phase is to try to maximize the reward in the reward-

punishment system. Reward values in a training phase are displayed in Figure 20. 

 

𝑟 = ⁡−0.001 ∗ √(𝑈𝐴𝑉𝑥 − 𝐸𝑁𝐸𝑀𝑌𝑥)2 + (𝑈𝐴𝑉𝑦 − 𝐸𝑁𝐸𝑀𝑌𝑦)2 + (𝑈𝐴𝑉𝑧 − 𝐸𝑁𝐸𝑀𝑌𝑧)2   (8) 
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Figure 20. Reinforcement Model Traning Proecesses 

 

6.3.2 Determine Path A* Algorithm 

 

The A* algorithm takes four arguments when running: Starting point, end point, 

obstacles and obstacle radius. The algorithm takes the (x,y,z) position of the user aircraft as the 

starting point, and the (x,y,z) position of the most dangerous enemy aircraft as the ending point. 

Obstacles are the locations of other enemy aircraft in the environment. In addition, since it is 

not desired to approach these planes, an obstacle radius is determined and a path within that 

radius is prevented. 

When a demo scenario is examined as an example, the shortest and safest path in figure 

21 is calculated. In this example, the position of the user aircraft in the Gazebo is displayed as 

(0,0,7) and the position of the most dangerous enemy aircraft is displayed as (-5,-5,10). In this 

scenario, the algorithm planned a path that reaches the target by passing through a total of 5 

nodes. 
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Figure 21.  Example Path with A* Algorithm 

  

6.4 Object Detection and Tracking 

 
In the project, YOLOv8 architecture is used as the object detection model. The model 

was trained in the Gazebo simulation environment with images taken from the user aircraft's 

camera. The images were labeled using the LabelImg program and the model was trained with 

the computer's own graphics card.  

During the simulation, when the user aircraft reaches the target location, the detection 

process begins on the image taken from the aircraft camera. The user aircraft is asked to follow 

the enemy aircraft for 10 seconds. A controller algorithm was developed to align the midpoint 

of the aircraft's camera with the midpoint of the detected aircraft. For example, if the enemy 

plane is to the right of the camera, the angular velocity value of the plane is updated to move to 

the right. When this follow-up process is done for 10 seconds, the scenario is completed 

successfully. An example camera view is seen in figure 22. 
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Figure 22. Enemy UAV Detection 

6.5 Interface 

An interface was developed using the PyQt library to examine the simulation scenario. 

The initial screen of the interface is shown in Figure 23. The status of the instant simulation 

phase can be examined on the simulation frame screen on the developed interface. In the boxes 

at the bottom of the interface, the fuzzy logic input information and the danger level of each 

aircraft at the moment the scenario starts are displayed. 

 
Figure 23. Interface 
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When the user plane reaches the target, as shown in Figure 24, the image from the plane's 

camera appears on the simulation frame screen. In this way, it can be easily displayed that the 

enemy aircraft has been detected and is being followed by the user aircraft. When the detection 

process starts, it counts down from 10 in the upper left corner of the screen and the success 

message is printed on the screen. 

 

Figure 24. Enemy UAV Detection on Interface  

 

There are 3 buttons at the top of the interface, as seen in figure 25. Start and stop buttons 

start and stop the scenario. The manual button opens a controller on the right side of the 

interface. With these controller buttons, enemy aircraft can be controlled and the tracking status 

of the user aircraft can be observed.  
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Figure 25. Interface with Contoller Buttons 

 

6.6 Tools 

 

Give the list of tools that used in the project 

• ROS Noetic 

• Gazebo / Rviz 

• Scikit-Fuzzy 

• OpenCV 

• Matplotlib 

• Numpy 

• PyTorch 

• PyQt / Qt-Designer 

• Microsoft Visual Studio 
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7. EXPERIMENTS 

 
Experiments were carried out according to the positions of the aircraft in different 

directions and at different distances. In the experiments, the user plane is at position 0,0,10. 

When the simulation starts, the planes move at random speeds for 10 seconds. Afterwards, the 

most dangerous plane is found and the shortest route is calculated. 

 

7.1 Experiment 1 

 
 In the first experiment, the enemy planes are at positions (3,-7), (-4,5), (6,8), (-6,-5) and 

their height is 13 meters. In addition, at the beginning of the experiment, all of the planes were 

facing forward. That is, the direction of enemy 2 and enemy 4 planes is towards the user plane. 

Figure 26 shows the simulation environment. 

 

 

Figure 26. Simulation environment 

The results are shown in figures 27 and 28. Looking at the danger levels of the enemies 

in figure 27, it can be seen that the most dangerous aircraft is enemy1. With the A* algorithm, 

a path planning was made from the user plane to the enemy1 plane as shown in figure 28. The 

aircraft went to the target and performed detection and tracking. 



 27 

 

Figure 27. Experiment 1 

 

 
Figure 28. Experiment 1 Result 
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7.2 Experiment 2 

  

 In the second experiment, the enemy planes are in positions (2,-3), (-4,3), (4,3), (-3,-2) 

and their height is 13 meters. Enemy aircraft are brought closer to the user aircraft. In addition, 

at the beginning of the experiment, all of the planes were facing away from the user plane. 

Figure 29 shows the simulation environment. 

 

 

Figure 29. Simulation Environment 

 
The results are shown in Figures 30 and 31. Looking at the danger levels of the enemies 

in figure 30, it can be seen that the most dangerous aircraft is enemy 4. With the A* algorithm, 

a path planning was made from the user plane to the enemy 4 plane as shown in figure 30. The 

aircraft went to the target and performed detection and tracking. 
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Figure 30. Experiment 2 

 

 
Figure 31. Experiment 2 Result 
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8. PROJECT PLAN 

Table 1 shows the steps by which the study was carried out. 

Table 1. Working Stage 

No 
Name and Objectives 

of Work Packages 

By Whom It 

Will Be 

Conducted 

Time Period 

(..-.. Month) 

Success Criteria and 

Contribution to the Project's 

Success 

1 Literature Research 
Burak Özdemir 

Ayla Bilgin 
Month 1. 

A literature review has been 

conducted, and an approach 

concept for the project has been 

planned.  

2 
Preparing a Simulation 

Environment 
Şeref Karakuş Months 2 and 3. 

With this work package, the plan is 

to create a simulation environment 

that closely resembles reality. An 

aircraft model will also be 

integrated into the simulation 

environment. This will enable the 

conduct of tests and training within 

the created environment. 

3 

Decision Making 

Algorithms with Fuzzy 

Logic 

 

Burak Özdemir 

Ayla Bilgin 

Şeref Karakuş 

 

Months 4 and 5.  

This work package aims to 

determine the threat levels of 

enemy aircraft using a Fuzzy 

Inference System based on aircraft 

speed, position, and location data. 

Distance, speed, and position 

information are obtained and 

processed using RosPy. The results 

are evaluated using the Mamdani 

fuzzy inference system and 

appropriate membership functions 

to determine danger levels 

4 
Enemy Aircraft 

Detection 
Ayla Bilgin Months 4.and 5. 

In this work package, the focus is 

on selecting and installing suitable 

camera hardware for integrating 

image processing algorithms. This 

hardware will be crucial for 

implementing tasks such as 

detecting enemy aircraft and 

determining their locations using 

the YOLOv8 algorithm. 

5 
Development of Path 

Planning Algorithms 

 

Burak Özdemir 

Ayla Bilgin 

Şeref Karakuş 

 

Months 5 and 6. 

In this work package, the aim was 

to study two different algorithms 

for determining the path towards 

the most dangerous aircraft in the 

project. Initially, research focused 

on reinforcement learning; 

however, due to inefficiencies 

observed on all three axes, an A* 

algorithm was subsequently 

developed to address these 

limitations. 
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6 
Object Detection and 

Tracking 

Burak Özdemir 

Şeref Karakuş 
Months 6 and 7. 

This work package used YOLOv8 

for object detection. The model 

trained on images from the user 

aircraft's camera in Gazebo, labeled 

with LabelImg, and using the 

computer's GPU. During 

simulations, the aircraft tracked 

enemy aircraft for 10 seconds, 

adjusting angular velocity based on 

their position relative to the camera. 

7 
Implementation of 

Integration and Testing 
Burak Özdemir Month 8 

This work package aims to ensure 

the integration and testing of all 

simulations in the simulation 

environment. This will enable the 

anticipation and resolution of 

various issues that the aircraft may 

encounter in a real-world 

environment. 

8 Reporting 

Burak Özdemir 

Ayla Bilgin 

Şeref Karakuş 

 

Month 9 

This work package ensures 

comprehensive reporting of the 

project process. It documents all 

stages, presents project objectives, 

methods, findings, and results 

clearly. Additionally, it evaluates 

challenges faced, measures taken, 

and proposed improvements in 

detail. 

 
Figure 32 shows the gantt diagram of the project. 

 

Figure 32. Gantt Diagram 
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9. CONCLUSION 

 

 Within the scope of the project, an autonomous delivery system was successfully 

implemented in an air combat. Thanks to the designed system, the aircraft can determine the 

most dangerous aircraft around it, direct it to the aircraft and follow it. Using ROS, the necessary 

data is obtained through the tools in the gazebo environment. These data are seamlessly 

transferred as input to the FIS algorithm and a hazard value can be obtained. Since a dog fight 

is then requested with the most dangerous plane, the user calculates a path in the most efficient 

way with the A* algorithm. When the user plane reaches the enemy plane, the object detection 

process begins and the dog fight system is activated. When the plane detects the enemy plane, 

it adjusts its speed data according to the position-to-position relationship between them, and if 

the enemy plane is too far away, it accelerates. The simulation scenario is completed 

successfully when the enemy aircraft is tracked for a total of 10 seconds. Thanks to this project, 

an aircraft will be able to safely escape from the planes around it during air communications 

and successfully destroy the most dangerous plane. In this way, the life safety of our pilots will 

be ensured. During the course of the project, efforts will be made to make these processes faster 

and to make map planning with reinforcement learning. Additionally, the algorithms used will 

be tested on development cards. 
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