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ABSTRACT

Air combat relies on complex strategies balancing attack and defense maneuvers. This
project aims to enhance autonomous decision-making capability in air combat scenarios by
developing an algorithm combining advanced techniques such as game theory, fuzzy logic, and
dynamic programming. The algorithm to be developed focuses on enabling autonomous systems
to make informed decisions during air combat. To achieve this, the developed algorithm will be
tested in a simulation environment, and its success rate will be measured. The performance of
the algorithm will be evaluated by testing it on various simulated combat scenarios. Success
metrics will include mission success rates, resource utilization efficiency, and adaptability to
changing environments. This study aims to present a new and effective approach that can be

used to enhance the decision-making capability of autonomous systems in air combat situations.

Keywords: air combat, fuzzy logic, dynamic programming, decision-making algorithms



OZET

Hava muharebeleri, saldir1 ve savunma manevralariin dengeli bir sekilde yapildigi
karmasik stratejilere dayanmaktadir. Bu projede, hava muharebelerinde otonom karar alma
yetenegini artirmak i¢in oyun teorisi, bulanik mantik ve dinamik programlama gibi ileri diizey
tekniklerin birlesiminden olusan bir algoritma gelistirilmesi hedeflenmektedir. Gelistirilecek
olan algoritma, hava muharebelerinde bilingli kararlar alabilen otonom sistemlerin
gelistirilmesine odaklanmaktadir. Bu amagcla, gelistirilen algoritma simiilasyon ortaminda test
edilecek ve basar1 orani dl¢iilecektir. Algoritmanin performanst, ¢esitli simiile edilmis muharebe
senaryolar1 lizerinde test edilerek degerlendirilecektir. Bagart metrikleri arasinda, misyon basari
oranlari, kaynak kullanim verimliligi ve degisen ortamlara uygunluk gibi faktdrler bulunacaktir.
Bu caligsma, hava muharebelerinde otonom sistemlerin karar alma yetenegini artirmak ig¢in

kullanilabilecek yeni ve etkili bir yaklagim sunmay1 amacglamaktadir.

Anahtar Kelimeler: hava muharebesi, bulanik mantik, dinamik programlama, karar alma

algoritmasi
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1. INTRODUCTION

Today’s military operations demand sophisticated decision-making from military
aircraft due to the increasing complexity and dynamic nature of air combat environments.
Despite reduced direct human intervention in modern military operations, the rapidly evolving
scenarios and uncertainties, such as changing enemy tactics and radar data, necessitate advanced
decision-making mechanisms. This complexity poses significant challenges for the safety and
success of military assets on the battlefield. With rising military expenditures and technological
advancements, the demand for capable aircraft is growing. However, for these aircraft to be
effective, they must quickly and accurately process information to make strategic decisions.
Thus, enhancing the decision-making capabilities of warplanes in air combat is a primary
concern for military strategists and engineers. In this context, the aim of this project is to develop
a comprehensive decision-making mechanism to enhance the effectiveness of warplanes in air
combat environments. This mechanism will support traditional military operations, allowing
aircraft to evaluate targets and threats efficiently and make strategic decisions. With
advancements in technology, the development of such algorithms has accelerated. One
commonly used approach in these developments is fuzzy logic. According to studies in this
field, fuzzy logic is a valuable method for analyzing and making decisions in complex and
uncertain situations that cannot be described with simple binary values like true/false [1]. Fuzzy
logic is particularly useful in air combat due to the numerous variables and uncertainties
involved, such as enemy tactics and radar data. These factors can significantly affect the
outcome of engagements. By processing complex and uncertain data, fuzzy logic can assess the
threat levels of target aircraft. It takes into account various factors like the target's location,
speed, and maneuvering capabilities to determine how dangerous a particular target aircraft is.
This information allows military aircraft to make strategic decisions and respond appropriately
to threats [2]. Additionally, the project plans to incorporate deep reinforcement learning to
develop a dogfight scenario. Deep reinforcement learning enables military aircraft to improve
their decision-making processes by learning from their experiences over time. This technique
employs deep neural networks to estimate Q-values, which represent the total expected reward

for each state-action pair, guiding the agent in choosing the best actions. The learning process



occurs through trial and error, allowing the agent to learn which actions maximize its rewards
[3]. Furthermore, the aircraft is expected to follow a path towards the enemy aircraft as
determined by fuzzy logic. Initially, this path will be learned through reinforcement learning,
followed by the realization of a dogfight scenario. As an alternative, the project aims to
determine an optimal route using the A* algorithm, integrate a camera into the aircraft, and
utilize object detection algorithms. This combination will enable the aircraft to detect enemy
planes and engage in dogfight strategies as needed. By integrating these algorithms and
techniques, the project strives to ensure that aircraft can successfully complete their missions
and achieve strategic goals in air combat, effectively responding to the complex and uncertain
conditions they encounter.

2. REQUIREMENTS SPECIFICATION

This thesis aims to develop autonomous aircraft systems during air combat. For this
purpose, fuzzy logic-based decision-making algorithms have been developed and implemented
using the Gazebo simulation environment and ROS to capture and process data. This algorithm
is designed to detect enemy aircraft and direct them to the most dangerous enemy aircraft. Once
the location of the enemy aircraft is determined, the aircraft will be detected with the YOLOv8
algorithm and tracking will be initiated. This pursuit is intended to resemble a dogfight scenario.
Additionally, the A* path planning algorithm will be used to ensure the safe and efficient
movement of the aircraft. These requirements include the basic steps necessary for the

successful completion of the project.

2.1. Simulation Environment Requirements

¢ Installation and configuration of the environment to ensure compatibility of Gazebo and
ROS platforms.

e Determination of requirements for simulating physical obstacles and weather conditions
in the simulation environment.

e Gazebo and ROS platforms run on the Linux operating system [3].



2.2. Decision Making Algorithm Requirements

e Development of fuzzy logic based decision making algorithm.
e Fuzzy logic based detection system requirements to detect enemy aircraft.
e Decision making algorithms are written using Python. The 'skfuzzy' library in the Python

programming language was used [4].

2.3. Enemy Aircraft Detection

e Selection and installation of appropriate camera hardware for the integration of image
processing algorithms.

e Detecting enemy aircraft and determining their locations with the YOLOv8 algorithm.

2.4. Path Planning Algorithm Requirements

e Conducting reinforcement learning trainings and determining whether they work
efficiently.

e Integration of the A* path planning algorithm for cruise planning towards the designated
location of the enemy aircraft as an alternative solution.

e Development of motion control systems so that the aircraft can perform the necessary

maneuvers to track enemy aircraft.

2.5. Performance and Reliability Requirements

e Determination of performance metrics related to the speed and accuracy of the decision-
making algorithm.
e Providing automatic debugging and security measures to detect and fix any errors in the

system.

2.6. Integration and Testing Requirements

e Seamless integration of all components (simulation environment, perception system,

path planning and motion control).



¢ Planning and execution of system tests, component tests and integrated system tests.

3. STANDARDS

The following standards were used during the project development process.

e |EC 29119-1 (International Electrotechnical Commission’s international standard on
specifies general concepts in software testing and presents key concepts): This standard

was taken into account when testing the written algorithms and software.

o |EEE 24641 (IEEE Standard for specifies interrelationships between the components of
the reference model): The interoperability of the algorithms is done in accordance with

this standard.

e Software Language Standard- Python 3.8.x: The software languages used in the

project were used in accordance with the necessary standards.

4. PATENTS

Some similar patents in the project are listed below.
e Prioritizing use of flight attitude controls of aircraft, Patent NO: US11124289B2
e Unmanned vehicle route planning method based on improved A-star algorithm
and deep reinforcement learning: CN111780777B

5. THEORETICAL BACKGROUND

5.1 Simulation Environment

Simulation environments play an important role in robotic studies. It provides a platform
for testing and improving software in a controlled manner. Gazebo and Robot Operating System

(ROS) are widely used for this purpose. Gazebo has created a 3D, dynamic, multi-robot



environment that can recreate the complex worlds that next-generation mobile robots will
encounter. Its open source status, fine grained control, and high fidelity place Gazebo in a unique
position to become more than just a stepping stone between the drawing board and real
hardware: data visualization, simulation of remote environments, and even reverse engineering
of blackbox systems are all possible applications [6]. ROS is not an operating system in the
traditional sense of process management and scheduling; rather, it provides a structured
communications layer above the host operating systems of a heterogenous compute cluster [7].
The fundamental concepts of the ROS implementation are nodes, messages, topics, and services
[8]. Integration between ROS and Gazebo is provided by a set of Gazebo plugins that support
many existing robots and sensors. Because the plugins present the same message interface as
the rest of the ROS ecosystem, you can write ROS nodes that are compatible with simulation,
logged data, and hardware [8].

In the project, a ROS supported camera was used and integrated on the aircraft. OpenCV
is the premier computer vision library, used in academia and in products around the world.
OpenCV provides many common computer vision algorithms and utilities that you can use and
build upon. ROS provides tight integration with OpenCV, allowing users to easily feed data
published by cameras of various types into OpenCV algorithms, such as segmentation and
tracking. ROS builds on OpenCV to provide libraries such as image_pipeline, which can be
used for camera calibration, monocular image processing, stereo image processing, and depth

image processing [8].

OpenCV ‘ OpenCV Iplimage ‘

]

!

‘ CvBridge ‘
ROS }

‘ROS Image Message ‘

Figure 1. ROS OpenCV integration [8]
Figure 1 shows how ROS integrates with the OpenCV library. At the same time, in the
project, the positions of the aircraft were taken through the odom node of ROS. The coordinate



frame called odom is a world-fixed frame [9]. Figure 2 shows the integration of odom data with
ROS.

earth » map +» odom ——— base_1l1ink

Figure 2. ROS odom integration [9]

5.2 Decision Making Algorithm (Fuzzy Logic)

Fuzzy logic algorithms have great importance in decision-making algorithms used in
aviation. Fuzzy logic is basically an analysis and decision-making method used to address more
complex and uncertain situations that cannot be defined by extreme values such as true/false.

In classical logic, propositions are accepted to be absolutely true or absolutely false. This
is mathematically represented by two values: one (1) for true and zero (0) for false. This dual
approach forms the basis of traditional logic systems and digital computing. However, the
situation is different in fuzzy logic; Here, the degree of accuracy can take an infinite number of
values between zero (0) and one (1), instead of being absolutely right or absolutely wrong. This
approach allows to better express uncertainties and intermediate states, thus helping to model
complex and dynamic systems more realistically. An example illustrating the working principle

of fuzzy logic is provided in Figure 3.
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Figure 3. Fuzzy Logic System



A Fuzzy Inference System (FIS) transforms input data into output data using fuzzy logic
principles to handle uncertain or imprecise information. The system comprises four main stages:
fuzzification, inference, rule base, and defuzzification. In the fuzzification stage, a specific input
value is transformed into fuzzy sets through corresponding membership functions. The
membership of an element x in a fuzzy set A in a universal set is expressed by pA(x) € [0,1]. In
this stage, for instance, the membership degrees of a distance can be calculated for categories
such as very close, close, normal, far, and very far.

In the inference stage, outputs are computed using the fuzzy rules defined in the system.
The rules are typically expressed in the "IF-THEN" format. If X is A, then y is B. Here, the input

sets A and B can be determined using the minimum operator (min) in equation (1).

min(pA(x), uB(¥)) (1)

Outputs determine how strongly each rule is applied. Another method used in this stage
Is the combination of various rules using the maximum operator (max) in equation (2) among

fuzzy sets.
uR(z) = max (min(,uAl(x), ,uBl(y)), min(uA2(x), uB2(y)), ..., min(uAn(x), uBn(y))) (2)

In the defuzzification stage, a single crisp output value is obtained from the combined
fuzzy sets. The most commonly used defuzzification method is the calculation of the centroid.
In this method, the centroid of the output is found as in equation (3).

_ Juc@)zdz
- fuc(z) dz (3)

This formula provides a defuzzified crisp value by calculating the centroid of the fuzzy
output sets. Alternatively, other defuzzification methods, such as the peak of the fuzzy output

or weighted average, can also be used [10].



The Mamdani fuzzy inference system is a commonly used method in fuzzy logic,
preferred particularly because it aligns more closely with human perception. To fully define the
operation of this system, various operators need to be assigned. These are:

e The AND operator used in the calculation of rule output (typically a T-norm).

e The OR operator (typically a T-conorm).

e The Implication operator used in the calculation of resultant MFs..

e The Aggregate operator used to combine qualified resultant MFs into a single overall

output MF (typically a T-conorm).

e The Defuzzification operator, which transforms an output MF into a single crisp value.
The centroid of area (COA) method used to calculate the final crisp output in the Mamdani
fuzzy inference system is expressed as equation (4).

[z uc(z)-zdz __ wlalzl+w2a2z2
[zuc(z)dz = wlal+w2a2

Zcoa =

(4)

In this formula, ai and zi are the area and centroid of the resultant MF, respectively, and
wi is the output of the rule. The defuzzification unit combines the outputs of all the rules
generated by a specific input and produces a crisp output. Thus, the fuzzy output is converted
back into a precise number. The centroid of area method is the most common way of
defuzzification, where the centroid of the fuzzy set is measured and projected onto the z-axis to

obtain a crisp result. The system logic is shown in Figure 4.

M B4 Min. c,
i bk 3
1)
Rule 1 Ay / . o pm
X B Y c. 7
M A2, Ha, u 2 i 5
Rule 2 Mg, \\ ”cz
X Y =
* y H Defuzzification
Combined (Centroid)
Conclusion
Fuzzy Set

Crisp
Value Zc 2

Figure 4. Mandani Fuzzy Inferance System



In the literature, similar studies have been conducted in air combat scenarios. For
example, the rapid and accurate threat evaluation (TE) of incoming aerial targets has a
significant impact on air defense. Two new generalized intuitionistic fuzzy soft set (GIFSS)
methods have been proposed for the threat evaluation of certain aerial targets. Specifically, a
model based on the generalized A-Shapley Choquet integral has been proposed for threat
evaluation of aerial targets. This model mitigates uncertainties by using weighted averages of
different parameters to more accurately determine threat levels [11]. Similarly, in our project,
parameters such as the aircraft's distance, speed, and position are evaluated to determine the
threat level; however, our approach is based on fuzzy logic and uses fuzzy membership
functions. Moreover, Beyond Visual Range (BVR) air combat is a significant trend in future
warfare tactics. In this scenario, a fighter aircraft can attack the enemy before a direct encounter.
The complexity of this tactic arises from the need to consider the target's maneuvers, the
missile's characteristics, and the positional advantages of the fighter aircraft. We can approach
this complexity with an algorithm that takes into account some critical parameters. These
parameters are processed to determine the superiority of the fighter aircraft and the threat factor
of the enemy. The data obtained from this process is used as input for a fuzzy logic algorithm

to determine the optimal combat strategy [12].

5.3 Path Planning Algorithm

5.3.1 Deep Q-Learning (Reinforcement Learning)

Reinforcement Learning is one of the modern artificial intelligence algorithms used in
path planning. In the reinforcement learning model, an agent improves itself based on its
environment through perception and action, as illustrated in Figure 5. At each step of
development, the agent receives an input (i) from the current state (s) of the environment. It then
selects an action and produces this action as an output. The action changes the state of the
environment, and the value of this state transition is provided to the agent as a scalar
reinforcement signal (r/reward). The agent's behavior (B) should be inclined to choose actions
that increase the total value of the reinforcement signal [13]. In other words, the goal is to

maximize the reward in the reward-punishment system.



Figure 5. Standard Reinforcement Learning Model
In Deep Reinforcement Learning, a deep neural network is used to estimate Q-values.
Q-values are estimated values of the expected total reward for each state-action pair. These Q-
values represent the expected reward an agent can obtain by taking any action in a given state.
The deep neural network is used to predict these Q-values and assist the agent in selecting the
best actions. Q-learning aims to choose actions that maximize the sum of the immediate reward
and the value of the subsequent state. While performing action A in state S, it leads to states

where the reward is r. Figure 6 shows the formula for calculating the Q-value. [14]

| Q:(s,_u/)|:l£_[]?,,| +YRis2 + 7V Riss + .. S,.U,D

V vy

Q-Values for the state Expected discounted Given the state and action
given a particular state cumulative reward

Figure 6. Q-Value
The decision-making steps of the Deep Q-Learning algorithm are outlined below. The
block diagram summarizing these steps is provided in Figure 7.
1) Set the parameters.
¢ Initialize the parameters for the Deep Q-Learning algorithm.
2) Update the parameters through training.
e Train the model and update the parameters based on the learning process.
3) If the maximum Q-value corresponds to the airplane's behavior, calculate the Q-
value.
o Compute the Q-value for the action that corresponds to the maximum Q-value

associated with the airplane's behavior.
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4) Based on the Qmax value, output the decision-making behavior that corresponds to
the Qmax value.
e This represents the best decision-making behavior for the airplane in the current
environment.
5) The environment is rewarded or penalized based on the behavior, and the decision-
making process is updated.
e Adjust the decision-making process by providing rewards or penalties to the

environment based on the actions taken.

Exploration Mission Environmental
Information Information

(Action Space - a) (State Space - 5)
o
Q2 Qmax Decision-

Deesp Meural " Action —»{ Making
Metwork . Selection Knowledge

an

Figure 7. Block diagram of the Deep Q Learning based decision making model [15]

5.3.2 A* Algorithm

A* is a search algorithm that has long been used in the pathfinding research community.
Its efficiency, simplicity, and modularity are often highlighted as its strengths compared to other
tools [16]. The A* algorithm, unlike other algorithms, has brains. So, it is a really smart path
finding algorithm compared to other algorithms. What A* Search Algorithm does is that at each
step it picks the node according to a value-‘f* which is a parameter equal to the sum of two other
parameters — ‘g’ and ‘h’. At each step it picks the node/cell having the lowest ‘f”, and process
that node/cell [17]. Below are the steps of the A* algorithm.

1) An open listis initialized.

2) A closed list is initialized. The starting point is added to the open list.

3) Until the open list is empty, the node with the smallest 'f' value is found in the open

list. This node is called 'q'. The value 'q' is extracted from the open list.

4) If target and 'q' are equal, the algorithm is stopped.

11



5) If not, 'g' and 'h' values are calculated again. This can be done in many ways.
Figure 8 gives a visual of how the A* algorithm works.

i 2 3

4 g
1
Unblocked

2

X D
’ . TarQEt
4 b >< . Source
5 A* Search Algorithm makes the

most intelligent choice at each

step. Hence you can see that
algarithm goes from {4,2) to (3,3)
and not (4,3) (shown by cross).

Similarly the algarithm goes from
(3,3) to (2,2) and nat {2,3)
{shown by cross).

Figure 8. A* Algorithm [17]

5.4 Object Detection and Tracking

The YOLO algorithm stands out as a critical component in many fields such as real-time
object detection, autonomous vehicles, robotics, video surveillance and augmented reality. The
most important feature that distinguishes it from models such as RCNN, FasterRCNN etc. is
that it can provide fast results. A single convolutional network simultaneously predicts multiple
bounding boxes and class probabilities for those boxes [18]. The algorithm divides the image
into NXxN sized frames to minimize errors and make better decisions. Each frame is individually
scanned to check whether an object is present or not. If the frame contains an object, it is checked
whether the object's center point lies within that frame. The frame that contains the object's
center point is defined as the decisive frame. [19] The frame containing the object's center point
returns specific parameters. These parameters include the coordinates of the bounding box
surrounding the object, the confidence score, and the object's class. The mechanism of how the
YOLO algorithm works on an image is illustrated in Figure 9.

12



1. Resize image.
2. Run convolutional network.
3. Non-max suppression.

Figure 9. The YOLO Detection System [18]

Average Precision (AP) and confidence score are important metrics that evaluate the
model's accuracy and coverage. Precision is the probability that the objects it detects are correct
among all objects. Recall is how many of the detected objects are correct. These equations are
included in equation 5. AP measures the relationship between precision and recall by calculating
the area under the precision-recall curve. An example of this graph is shown in figure 10. This
metric summarizes the performance of the model for different confidence thresholds and

determines the overall performance by evaluating each object category separately. [18]

Recall = Precision = —— (5)
TP+FN TP+FP
1.0
A Hun;uns
0.8 f!m],
c H YOLO
S 0.6/
§ 0.4 *L*_.) i T)\PM.,\
a "‘\\ Poselets M
RCNNT ‘\_\k
0.2 : \’.\
e e R
_04] _ —'\, St
0.0 0.2 0.4 0.6 0.8 1.0
Recall

Figure 10. mAP Graph on example Dataset [18]

Confidence score expresses the probability of the model finding an object in a frame.
This score is obtained by multiplying the probability of the object (Pr(Object)) by the
Intersection over Union (loU) value. IoU is calculated as the ratio of the intersection between
the predicted box and any ground truth box to the union. The trust score takes a value between
0 and 1; 0 indicates that the object definitely does not exist, and 1 indicates that it definitely
exists. The algorithm can sometimes return unnecessary parameters and draw multiple boxes.
Or it can find more than one center point of an object. The box with the highest detection

probability (with a high 10U value) is selected and other boxes with lower 10U values are
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removed. This process is called Non-Maximum Suppression. [20] The network can detect an
object when there is no object in the frame, draw the bounding frame incorrectly, or make errors
in classification. To prevent such situations, the loss function in equation 6 must be used. This
function is created by summing the loss values in the box coordinates and confidence score

value for classification [18].
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As a result, the image divided into frames of size NxN returns a total of 5 values (4 box
coordinates and a confidence score) and object class probability for each bounding box. As seen
in the general yolo architecture in figure 11 The total output size on each image is expressed as
NXxNx(5B+C).

fully

\\ - fully time
\\‘ connected connected s
Input
|m§;e Q (x, y. w, h, obj swe) class probability
DarkNet
N : Architecture length: 5B+C
N
N
N
. 7x7x1024 4096 7x7x30

448x448x3

Figure 11. General YOLO Architecture

Within the scope of the project, the YOLOvV8 model, whose architecture is shown in

Figure 12, is used. Improvements over previous models are as follows: [21]
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1. Decoupled Head structure: With this structure, the model can process object
detection and classification tasks independently of each other. In this way, each

model produces a better score on its own.

2. Activation Functions: While sigmoid is used for object detection, softmax is used
for class prediction.

3. Loss Functions: CloU and DFL are used for the object box. In this way,
performance is increased when detecting small objects. Binary cross entropy is
used as classification loss.

4. Anchor-Free Model: Direct anchor detection is performed and thus more
accurate object detection can be achieved.

YOLOVS
Backbone Head YoLovsHead ;

V & 4 U— L (Conv } 7 ] —
- — < 1 1 ! g
// 2 2 e} % T Gt} . B4 & /// - Detect 1cls4 {;
P4 [ Yy & —> [ (Conv } z Ve nc |/
: A ZARS - 1|
% 7

Figure 12. Yolov8 Architecture [21]

6. METHODOLOGY

6.1 Simulation Environment

The simulation environment was created on the gazebo tool as shown in figure 13 and
figure 14. There are a total of 5 fixed-wing unmanned aerial vehicles in the environment. 4 of
them are enemy planes in red. The other one is the user's plane in blue. Additionally, there are
constantly moving clouds in the sky. A gray background is placed at the bottom of the

environment.
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Figure 13. Simulation Environment

Gazebo - @

Figure 14. Simulation Environment

6.2 Decision Making Algorithm with Fuzzy Logic

A Fuzzy Inference System with 3 inputs was designed to find the most dangerous aircraft
in the project. The system determines a danger level for each enemy aircraft using the speed,
location, and position data from the aircraft.

The first of the inputs is distance information. The distance between the enemy aircraft's
location and the user aircraft is determined. This location information is read through the odom
topic with RosPy. A distance membership function value is calculated based on this distance.
The graph of these membership functions is shown in figure 15. While the closest membership
function value is calculated for the range of 0 - 6 meters, the farthest membership function value
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is calculated for 17 meters and above. This distance value is normalized between 0-1 to obtain

more accurate results before being sent to the fuzzy system.

Distance Membership Functions
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0.0 25 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Figure 15. Distance Membership Functions

The second input value is the forward speed of the enemy aircraft at the time of
calculation. With RosPy, Twist type speed data is sent and read to the aircraft via the cmd_vel
topic. The speed data in this twist type is in the range of 0-1. For this reason, fast, slow and

medium membership functions in the range 0-1 in Figure 16 were created.

Velocity Membership Functions

1.0 — Low
Normal
—— High

0.8

0.6

0.4
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0.0 0.2 0.4 0.6 0.8 10

Figure 16. Velocity Membership Functions
As the final input, information about the position of the enemy aircraft relative to the
user aircraft is used. An algorithm has been developed to calculate this position information.

The algorithm reads the yaw angle and position information of the aircraft using odom data.
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When we divide the simulation environment into four regions, the algorithm first determines in
which region the enemy aircraft is relative to the user aircraft. Afterwards, the position value is
normalized between 0-1 in accordance with the direction and region. And this value is used in
the membership functions in Figure 17. The min-max normalization formula in equation (7) is

used for this normalization process.

position—mingq

Maxeg—mingg * (maxnew - mlnneW)> + ming,ew (7)

POSItLONy ormalization = <

Position Membership Functions
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Figure 17. Position Membership Functions

These three membership values obtained are processed according to the 70's min-max
rule system shown in Figure 18. The minimum of each value is determined, and then the

maximum of those belonging to the same output membership function is determined.
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Figure 18. Rule System

Figure 19 shows these output membership functions. These class values are passed
through the defuzzifier function to determine a danger level. Mamdani fuzzy inference system
is used in this process. In this way, the membership values obtained are processed in the rule

base and then the degree of danger is calculated.
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Risk Membership Functions
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Figure 19. Risk Membership
6.3 Path Planning Algorithms (RL, A*)

In the project, two different algorithms were studied for the path determined when
heading towards the most dangerous aircraft. The first studies were on reinforcement learning.
However, since this method does not work efficiently on 3 axes, an A* algorithm has also been

developed.

6.3.1 Determine Path Reinforcement Learning

At the beginning of the studies, a Deep Q RL model was developed to reach the target
point safely. The model takes the instantaneous distance of the aircraft to the target as input and
sends speed data to the aircraft as output.

The reward system of the model is structured according to how far the aircraft is from
the target location. Each time the plane reaches the target it gets +100 points. If the plane cannot
reach the target within a certain time or the agent hits an obstacle, -100 points are awarded. At
the time of departure, the reward is structured according to how far the aircraft is from the target
location. The main purpose of the training phase is to try to maximize the reward in the reward-

punishment system. Reward values in a training phase are displayed in Figure 20.

r= —0.001 * /(UAVx — ENEMYx)? + (UAVy — ENEMYY)? + (UAVz — ENEMYZ)? (8)
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Figure 20. Reinforcement Model Traning Proecesses

6.3.2 Determine Path A* Algorithm

The A* algorithm takes four arguments when running: Starting point, end point,
obstacles and obstacle radius. The algorithm takes the (x,y,z) position of the user aircraft as the
starting point, and the (X,y,z) position of the most dangerous enemy aircraft as the ending point.
Obstacles are the locations of other enemy aircraft in the environment. In addition, since it is
not desired to approach these planes, an obstacle radius is determined and a path within that
radius is prevented.

When a demo scenario is examined as an example, the shortest and safest path in figure
21 is calculated. In this example, the position of the user aircraft in the Gazebo is displayed as
(0,0,7) and the position of the most dangerous enemy aircraft is displayed as (-5,-5,10). In this
scenario, the algorithm planned a path that reaches the target by passing through a total of 5

nodes.
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Figure 21. Example Path with A* Algorithm

6.4 Object Detection and Tracking

In the project, YOLOVS architecture is used as the object detection model. The model
was trained in the Gazebo simulation environment with images taken from the user aircraft's
camera. The images were labeled using the Labellmg program and the model was trained with
the computer's own graphics card.

During the simulation, when the user aircraft reaches the target location, the detection
process begins on the image taken from the aircraft camera. The user aircraft is asked to follow
the enemy aircraft for 10 seconds. A controller algorithm was developed to align the midpoint
of the aircraft's camera with the midpoint of the detected aircraft. For example, if the enemy
plane is to the right of the camera, the angular velocity value of the plane is updated to move to
the right. When this follow-up process is done for 10 seconds, the scenario is completed

successfully. An example camera view is seen in figure 22.
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Figure 22. Enemy UAV Detection
6.5 Interface

An interface was developed using the PyQt library to examine the simulation scenario.
The initial screen of the interface is shown in Figure 23. The status of the instant simulation
phase can be examined on the simulation frame screen on the developed interface. In the boxes
at the bottom of the interface, the fuzzy logic input information and the danger level of each

aircraft at the moment the scenario starts are displayed.

UAV Controller - o

Skart Stop -

TURKISH
AEROSPACE

Simulation Frame

ENEMY 2 ENEMY 3 ENEMY 4

Figure 23. Interface
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When the user plane reaches the target, as shown in Figure 24, the image from the plane's
camera appears on the simulation frame screen. In this way, it can be easily displayed that the
enemy aircraft has been detected and is being followed by the user aircraft. When the detection
process starts, it counts down from 10 in the upper left corner of the screen and the success

message is printed on the screen.

o/

TURKISH
AEROSPACE

-uav1 av2- uav3 -vav4
Distance: 12.93 S| 11.92 Distance: 14.62 Distance: 12.65
Velocity: 0.02 el ) Velocity: -0.04 Velocity: 0.00
Position: 0.39 0.00 Position: 0.02 Position: 0.59

'osit
Danger Level: 0.08 Danger Level: 0.08 Danger Level: 0.08 Danger Level: 0.18

Figure 24. Enemy UAV Detection on Interface

There are 3 buttons at the top of the interface, as seen in figure 25. Start and stop buttons
start and stop the scenario. The manual button opens a controller on the right side of the
interface. With these controller buttons, enemy aircraft can be controlled and the tracking status

of the user aircraft can be observed.
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6.6 Tools

JAV Controller
Start  Stop -

wav (0.87)

|

-uavz-
Distance: 11.92
Velocity: 0.00
Position: 0.00 2
Danger Level: 0.08 Danger Level: 0.08

Danger Level: 0.18

Figure 25. Interface with Contoller Buttons

Give the list of tools that used in the project

ROS Noetic
Gazebo / Rviz
Scikit-Fuzzy
OpenCV
Matplotlib

Numpy

PyTorch

PyQt / Qt-Designer

Microsoft Visual Studio
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7. EXPERIMENTS

Experiments were carried out according to the positions of the aircraft in different
directions and at different distances. In the experiments, the user plane is at position 0,0,10.
When the simulation starts, the planes move at random speeds for 10 seconds. Afterwards, the

most dangerous plane is found and the shortest route is calculated.

7.1 Experiment 1

In the first experiment, the enemy planes are at positions (3,-7), (-4,5), (6,8), (-6,-5) and
their height is 13 meters. In addition, at the beginning of the experiment, all of the planes were
facing forward. That is, the direction of enemy 2 and enemy 4 planes is towards the user plane.

Figure 26 shows the simulation environment.

Figure 26. Simulation environment

The results are shown in figures 27 and 28. Looking at the danger levels of the enemies
in figure 27, it can be seen that the most dangerous aircraft is enemy1. With the A* algorithm,
a path planning was made from the user plane to the enemy1 plane as shown in figure 28. The

aircraft went to the target and performed detection and tracking.
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Figure 28. Experiment 1 Result
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7.2 Experiment 2

In the second experiment, the enemy planes are in positions (2,-3), (-4,3), (4,3), (-3,-2)
and their height is 13 meters. Enemy aircraft are brought closer to the user aircraft. In addition,
at the beginning of the experiment, all of the planes were facing away from the user plane.

Figure 29 shows the simulation environment.

Figure 29. Simulation Environment

The results are shown in Figures 30 and 31. Looking at the danger levels of the enemies
in figure 30, it can be seen that the most dangerous aircraft is enemy 4. With the A* algorithm,
a path planning was made from the user plane to the enemy 4 plane as shown in figure 30. The

aircraft went to the target and performed detection and tracking.
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8. PROJECT PLAN

Table 1 shows the steps by which the study was carried out.
Table 1. Working Stage

No

Name and Objectives
of Work Packages

By Whom It
Will Be
Conducted

Time Period
(..-.. Month)

Success Criteria and
Contribution to the Project's
Success

Literature Research

Burak Ozdemir
Ayla Bilgin

Month 1.

A literature review has been
conducted, and an approach
concept for the project has been
planned.

Preparing a Simulation
Environment

Seref Karakus

Months 2 and 3.

With this work package, the plan is
to create a simulation environment
that closely resembles reality. An
aircraft model will also be
integrated into the simulation
environment. This will enable the
conduct of tests and training within
the created environment.

Decision Making
Algorithms with Fuzzy
Logic

Burak Ozdemir
Ayla Bilgin
Seref Karakus

Months 4 and 5.

This work package aims to
determine the threat levels of
enemy aircraft using a Fuzzy
Inference System based on aircraft
speed, position, and location data.
Distance, speed, and position
information are obtained and
processed using RosPy. The results
are evaluated using the Mamdani
fuzzy inference system and
appropriate membership functions
to determine danger levels

Enemy Aircraft
Detection

Ayla Bilgin

Months 4.and 5.

In this work package, the focus is
on selecting and installing suitable
camera hardware for integrating
image processing algorithms. This
hardware will be crucial for
implementing tasks such as
detecting enemy aircraft and
determining their locations using
the YOLOv8 algorithm.

Development of Path
Planning Algorithms

Burak Ozdemir
Ayla Bilgin
Seref Karakus

Months 5 and 6.

In this work package, the aim was
to study two different algorithms
for determining the path towards
the most dangerous aircraft in the
project. Initially, research focused
on reinforcement learning;
however, due to inefficiencies
observed on all three axes, an A*
algorithm  was  subsequently
developed to address these
limitations.

30




This work package used YOLOvVS8
for object detection. The model
trained on images from the user
aircraft's camera in Gazebo, labeled
Object Detection and | Burak Ozdemir Months 6 and 7. | With Labelimg, and using the
Tracking Seref Karakus " | computer's GPU. During
simulations, the aircraft tracked
enemy aircraft for 10 seconds,
adjusting angular velocity based on
their position relative to the camera.
This work package aims to ensure
the integration and testing of all
simulations in the simulation
Implemgntation _ of Burak Ozdemir Month 8 env_ir_onment. This will ena_lble the
Integration and Testing anticipation and resolution of
various issues that the aircraft may
encounter in a real-world
environment.

This work package ensures
comprehensive reporting of the
project process. It documents all
stages, presents project objectives,
Month 9 methods, findings, and results
clearly. Additionally, it evaluates
challenges faced, measures taken,
and proposed improvements in
detail.

Burak Ozdemir
Ayla Bilgin

8 Reporting Seref Karakus

Figure 32 shows the gantt diagram of the project.

TASKS\MONTHS SEPTEMPER OCTOBER November December January February March April May June

Research

Preparing a Simulation
Environment

Decision Making
Algorithms with Fuzzy
Logic

Enemy Aircraft
Detection

Development of Path
Planning Algorithms

Object Detection and
Tracking

Implementation of
Integration and Testing

Reporting

Figure 32. Gantt Diagram
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9. CONCLUSION

Within the scope of the project, an autonomous delivery system was successfully
implemented in an air combat. Thanks to the designed system, the aircraft can determine the
most dangerous aircraft around it, direct it to the aircraft and follow it. Using ROS, the necessary
data is obtained through the tools in the gazebo environment. These data are seamlessly
transferred as input to the FIS algorithm and a hazard value can be obtained. Since a dog fight
is then requested with the most dangerous plane, the user calculates a path in the most efficient
way with the A* algorithm. When the user plane reaches the enemy plane, the object detection
process begins and the dog fight system is activated. When the plane detects the enemy plane,
it adjusts its speed data according to the position-to-position relationship between them, and if
the enemy plane is too far away, it accelerates. The simulation scenario is completed
successfully when the enemy aircraft is tracked for a total of 10 seconds. Thanks to this project,
an aircraft will be able to safely escape from the planes around it during air communications
and successfully destroy the most dangerous plane. In this way, the life safety of our pilots will
be ensured. During the course of the project, efforts will be made to make these processes faster
and to make map planning with reinforcement learning. Additionally, the algorithms used will

be tested on development cards.
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